

Universal
Design

Ronald Mace

“The concept of designing
all products and the built
environment to be
aesthetic and usable to the
greatest extent possible by
everyone, regardless of
their age, ability, or status
in life.”

1. Equitable use

2. Flexibility in use

3. Simple and intuitive

4. Perceptible information

5. Tolerance for error

6. Low physical effort

7. Size and space for approach & use

Hi

Hi

@mb

Matthew
Bischoff

🗽 NYC

🏳🌈 They/them

🚶Non-disabled

APPS
FOR
ALL

APPS
FOR
ALL

MAKING
SOFTWARE

ACCESSIBLE

I Don’t Know How To Explain To You That
You Should Care About Other People

Our apps aren’t accessible

🤷 Why not?

😬 Excuses

👯 But most of my users…

🤵 But my boss…

😓 But it’s difficult…

🤑 But what’s the ROI…

“When we work on
making our devices
accessible by the
blind, I don’t consider
the bloody ROI.”

Tim Cook

📲 Apps must be accessible

🤔 Why?

🦻 🧕 🧏 🤱 👪 👴

👨🦼 🚶 🧑🦯 🧎 👩🤝👩 🕺

 Human Interface Guidelines

“1 in 7 people have a disability
or impairment that affects the
way they interact with the
world and their devices.”

📊 14% of your customers

Tanya Harrison
she/her

Ell Schulman
ze/zem

🕰 Permanent

⏲ Temporary

⏱ Situational

https://www.microsoft.com/design/inclusive/

👩⚖ It’s the law

https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos
https://www.google.com/search?q=supreme+court+victory+dominos

😇 It’s the right thing to do

Marco Arment

“Accessibility failures should be embarrassments
to all developers because they’re usually very
easy to fix... Rare ‘complex’ issues are usually less
than an hour’s work.”

🧰 How?

1. Equitable use

2. Flexibility in use

3. Simple and intuitive

4. Perceptible information

5. Tolerance for error

6. Low physical effort

7. Size and space for approach & use

✅ Accessibility Audit

📋 Audit one screen at a time

🧪 Test each accessibility feature

🔬 Ensure proper contrast, size, & labeling

🧰 Use system controls wherever possible

🌏 Localize your accessibility labels

🙋 Test with users of assistive technology

🌐 Axes of Access

👁 Vision

🦻 Hearing

♿ Physical & Motor

📓 Literacy & Learning

🌍 Locality

🌈 Inclusion

 👁 Vision

🎧 VoiceOver

🎚 Dynamic Type

🌘 Smart Invert

📓 Differentiate Without Color

🔎 Zoom & Magnifier

📳 Reduce Motion

🎧 VoiceOver
let slider = UISlider()

/// A localized string that succinctly identifies the accessibility element.
slider.accessibilityLabel = "Text Size Slider"

let percent = NumberFormatter.localizedString(from: 0.67 as
NSNumber, number: .percent)

/// A localized string that represents the current value of the accessibility element.
slider.accessibilityValue = percent

/// A trait describes a single aspect of an element’s behavior, state, or usage.
slider.accessibilityTraits = .adjustable

/// A brief description of the result of performing an action on the accessibility
element.
slider.accessibilityHint = "Swipe up or down with one finger
to adjust the value."

🎚 Dynamic Type
let label = UILabel()

/// Indicates whether the object automatically updates its font when the device’s
content size category changes.
label.adjustsFontForContentSizeCategory = true

/// Returns an instance of the system font for the specified text style, scaled for the
user's selected content size category.
let font = UIFont.preferredFont(forTextStyle: .headline)
label.font = font

// MARK: - Custom Fonts

let fontMetrics = UIFontMetrics(forTextStyle: .headline)
let customFont = UIFont(name: "Comic Sans", size: 42)!

/// Returns a version of the specified font that adopts the current font metrics.
let scaledFont = fontMetrics.scaledFont(for: customFont)
label.font = scaledFont

🌘 Smart Invert

let legsImageView = UIImageView()

/// Indicates whether the view ignores an accessibility request to invert its
colors.
legsImageView.accessibilityIgnoresInvertColors = true

/// Returns whether the system preference for invert colors is enabled.
UIAccessibility.isInvertColorsEnabled

/// Posted by UIKit when the setting for inverted colors has changed.
UIAccessibility.invertColorsStatusDidChangeNotification

📓 Differentiate Without Color

let statusView = UIImageView()

statusView.backgroundColor = shouldGo ? .green : .red

/// Returns whether or not the system preference for Differentiate Without Color is
enabled.
if UIAccessibility.shouldDifferentiateWithoutColor {
 statusView.image = shouldGo ? goImage : stopImage
}

/// Posted by UIKit when the system’s Differentiate Without Color Setting has
changed.
UIAccessibility.differentiateWithoutColorDidChangeNotification

✔

✕

🔎 Zoom

/// Warns users that application-specific gestures conflict with the
system-defined Zoom accessibility gestures.
UIAccessibility.registerGestureConflictWithZoom()

/// Notifies the system that the app’s focus has changed to a new
location.
UIAccessibility.zoomFocusChanged(
 zoomType: .insertionPoint,
 toFrame: replyTextViewFrame,
 in: textView
)

📳 Reduce Motion & Transparency

/// Returns a Boolean value indicating whether Reduce Motion is
enabled.
if UIAccessibility.isReduceMotionEnabled {
 likeButton.displayLike(animated: false)
} else {
 likeButton.displayLike(animated: true)
}

/// Posted by UIKit when the system’s Reduce Motion setting has
changed.
UIAccessibility.reduceMotionStatusDidChangeNotification

💬 Audio Descriptions

🅿 Bold Text

🔘 Button Shapes

🏷 On/Off Labels

☀ Increase Contrast

🎨 Color Filters

⚪ Reduce White Point

🦻 Hearing

🦻 Hearing Devices

🗯 Subtitles & Captioning

🦻 Hearing Devices

import AVKit

let session = AVAudioSession.sharedInstance()

/// Apple supports the use of Bluetooth Low Energy (LE) hearing aids.
Apps don’t have control over routing to these devices. Instead, the system
automatically decides when routing to Bluetooth LE is appropriate.

var isRoutingToHearingAid: Bool {
 return session.currentRoute.outputs.contains {
 $0.portType == .bluetoothLE
 }
}

🗯 Subtitles & Captioning
import AVKit

let playerViewController = AVPlayerViewController()

/// Indicates whether the player view controller shows playback
controls.
playerViewController.showsPlaybackControls = true

/// Starting with iOS 7.0, AVPlayer provides automatic media selection
based on the user’s system preferences as its default behavior. To
override the default criteria for any media selection group, use
`setMediaSelectionCriteria(_:forMediaCharacteristic:)`.

playerViewController.player?.appliesMediaSelectionCrit
eriaAutomatically = true

 ♿ Physical & Motor

🎛 Switch Control

🎙 Voice Control

⌨ Full Keyboard Access

👆 Assistive Touch

🎛 Switch Control
class RetweetControl: UIControl {

 /// Tells the element to activate itself and report the success or
failure of the operation.
 override func accessibilityActivate() -> Bool {
 sendActions(for: .primaryActionTriggered)

 return true
 }
}

/// Returns a Boolean value indicating whether it is enabled.
UIAccessibility.isSwitchControlRunning

/// Posted by UIKit when the system setting has changed.
UIAccessibility.switchControlStatusDidChangeNotification

🎙 Voice Control

• Uses the same labels as VoiceOver

• Learn the commands

• “Show numbers”

• “Show names”

• ”Show grid”

• Make sure all actions and gestures in your
app can be performed via Voice Control

⌨ Full Keyboard Access

protocol UIAccessibilityContainer {
 /// An array of the accessibility elements in the container.
 var accessibilityElements: [Any]? { get set }

 /// Returns the accessibility element at the specified index.
 func accessibilityElement(at: Int) -> Any?

 /// Returns the index of the specified accessibility element.
 func index(ofAccessibilityElement: Any) -> Int
}

📚 Literacy & Learning

📣 Speak Selection

📰 Safari Reader

⌨ Typing Feedback

📣 Speak Selection
let tweetTextView = UITextView()

/// Controls the ability of the user to select content and interact with URLs and
attachments.
tweetTextView.isSelectable = true

/// Indicates whether speaking the selection is enabled.
UIAccessibility.isSpeakSelectionEnabled

/// Posted when the system’s Speak Selection setting has changed.
UIAccessibility.speakSelectionStatusDidChangeNotification

/// Indicates whether speaking the screen is enabled.
UIAccessibility.isSpeakScreenEnabled

/// Posted when the system’s Speak Screen setting has changed.
UIAccessibility.speakScreenStatusDidChangeNotification

📰 Safari Reader

let configuration = SFSafariViewController.Configuration()

/// A value that specifies whether Safari should enter Reader mode.
configuration.entersReaderIfAvailable = true

let browser = SFSafariViewController(url: url,
configuration: configuration)

present(browser, animated: true)

⌨ Typing Feedback
class TweetReplyTextView: UITextView {
 let keyboardViewController = KeyboardViewController()

 override var inputViewController: UIInputViewController? {
 return keyboardViewController
 }
}

class KeyboardViewController: UIInputViewController {
 override func viewDidLoad() {
 super.viewDidLoad()

 inputView = UIInputView(frame: frame, inputViewStyle: .keyboard)

 let tButton = UIButton()
 tButton.addTarget(self, action: #selector(tButtonTapped),
for: .primaryActionTriggered)
 inputView?.addSubview(jButton)
 }

 @objc func tButtonTapped() {
 textDocumentProxy.insertText("T")
 }
}

🌍 Locality

📝 Localized Strings

🔢 Localized Formats

📝 Localized Strings

/// Xcode can read through a project’s code to find invocations of
NSLocalizedString() and automatically generate the appropriate strings
files for the project’s base localization.

let placeholder = NSLocalizedString("What’s
happening?", comment: "Compose placeholder text.")

textView.placeholder = placeholder

🔢 Localized Formats

let date = Date()
let likeCount = 2401 as NSNumber

/// Returns a string representation of a given date, formatted for the
current locale using the specified date and time styles.
DateFormatter.localizedString(
 from: date, dateStyle: .medium, timeStyle: .short
)

/// Returns a localized number string with the specified style.
NumberFormatter.localizedString(
 from: decimal, number: .decimal
)

🌈 Inclusion

📇 Names

🏳🌈 Gender & Sexuality

👩⚕ Race & Ethnicity

📇 Names

var components = PersonNameComponents()

components.namePrefix = "Mx." // Gender-neutral title
components.givenName = "Matthew"
components.familyName = "Bischoff"
components.nickname = "Matt"

/// Prints “Matthew Bischoff” in US English.
PersonNameComponentsFormatter.localizedString(from: components, style: .default)

/// Prints “Matt” in US English.
PersonNameComponentsFormatter.localizedString(from: components, style: .short)

/// Prints “MB” in US English.
PersonNameComponentsFormatter.localizedString(from: components, style: .abbreviated)

1. People have exactly one canonical full name.

2. People have exactly one full name which they go by.

3. People have, at this point in time, exactly one canonical full name.

4. People have, at this point in time, one full name which they go by.

5. People have exactly N names, for any value of N.

6. People’s names fit within a certain defined amount of space.

7. People’s names do not change.

8. People’s names change, but only at a certain enumerated set of events.

9. People’s names are written in ASCII.

10. People’s names are written in any single character set.

11. People’s names are all mapped in Unicode code points.

12. People’s names are case sensitive.

13. People’s names are case insensitive.

14. People’s names sometimes have prefixes or suffixes, but you can safely ignore those.

15. People’s names do not contain numbers.

16. People’s names are not written in ALL CAPS.

17. People’s names are not written in all lower case letters.

18. People’s names have an order to them. Picking any ordering scheme will automatically
result in consistent ordering among all systems, as long as both use the same ordering
scheme for the same name.

19. People’s first names and last names are, by necessity, different.

20. People have last names, family names, or anything else which is shared by folks recognized
as their relatives.

21. People’s names are globally unique.

22. People’s names are almost globally unique.

23. Alright alright but surely people’s names are diverse enough such that no million people
share the same name.

24. My system will never have to deal with names from China.

25. Or Japan.

26. Or Korea.

27. Or Ireland, the United Kingdom, the United States, Spain, Mexico, Brazil, Peru, Russia,
Sweden, Botswana, South Africa, Trinidad, Haiti, France, or the Klingon Empire, all of which
have “weird” naming schemes in common use.

28. That Klingon Empire thing was a joke, right?

29. Confound your cultural relativism! People in my society, at least, agree on one commonly
accepted standard for names.

30. There exists an algorithm which transforms names and can be reversed losslessly. (Yes,
yes, you can do it if your algorithm returns the input. You get a gold star.)

31. I can safely assume that this dictionary of bad words contains no people’s names in it.

32. People’s names are assigned at birth.

33. OK, maybe not at birth, but at least pretty close to birth.

34. Alright, alright, within a year or so of birth.

35. Five years?

36. You’re kidding me, right?

37. Two different systems containing data about the same person will use the same name for
that person.

38. Two different data entry operators, given a person’s name, will by necessity enter bitwise
equivalent strings on any single system, if the system is well-designed.

39. People whose names break my system are weird outliers. They should have had solid,

acceptable names, like ⽥中太郎.

40. People have names.

Falsehoods Programmers Believe About Names by Patrick McKenzie

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

🏳🌈 Gender and Sexuality

• Don’t ask for gender if you don’t need it

• Allow typing a gender, selecting no
gender, and multiple genders

• Don’t marginalize folks as “other“ or
“prefer not to say”

• Give people a place to put their pronouns

• Don’t assume people’s sexualities

• Let people self-identify

👩⚕ Race & Ethnicity

• Build a diverse team of designers,
engineers, and managers

• Recognize algorithms have biases

• Test with folks of multiple races and
ethnicities

• Own and fix your issues

APPS ARE FOR EVERYONE

GOOD DESIGN IS UNIVERSAL

ACCESSIBILITY IS OUR JOB

THANK YOU
@mb • matthewbishoff.com/apps-for-all • lickability.com

https://matthewbischof.com
https://matthewbischoff.com/apps-for-all
https://lickability.com

